Binary partition tree as an efficient representation for image processing, segmentation, and information retrieval
نویسندگان
چکیده
This paper discusses the interest of binary partition trees as a region-oriented image representation. Binary partition trees concentrate in a compact and structured representation a set of meaningful regions that can be extracted from an image. They offer a multiscale representation of the image and define a translation invariant 2-connectivity rule among regions. As shown in this paper, this representation can be used for a large number of processing goals such as filtering, segmentation, information retrieval and visual browsing. Furthermore, the processing of the tree representation leads to very efficient algorithms. Finally, for some applications, it may be interesting to compute the binary partition tree once and to store it for subsequent use for various applications. In this context, the paper shows that the amount of bits necessary to encode a binary partition tree remains moderate.
منابع مشابه
Binary Partition Tree as an Efficient Representation for Filtering Segmentation
This paper discusses the interest of Binary Partition Trees as shape oriented image representations Binary Partition Trees concentrate in a compact and structured representation a set of meaningful regions that can be extracted from an image This representation can be used for a large number of processing goals such as ltering segmentation information retrieval and visual browsing Furthermore t...
متن کاملMinimum Spanning Tree-based Structural Similarity Clustering for Image Mining with Local Region Outliers
Image mining is more than just an extension of data mining to image domain. Image mining is a technique commonly used to extract knowledge directly from image. Image segmentation is the first step in image mining. We treat image segmentation as graph partitioning problem. In this paper we propose a novel algorithm, Minimum Spanning Tree based Structural Similarity Clustering for Image Mining wi...
متن کاملA New Heuristic Algorithm for Drawing Binary Trees within Arbitrary Polygons Based on Center of Gravity
Graphs have enormous usage in software engineering, network and electrical engineering. In fact graphs drawing is a geometrically representation of information. Among graphs, trees are concentrated because of their ability in hierarchical extension as well as processing VLSI circuit. Many algorithms have been proposed for drawing binary trees within polygons. However these algorithms generate b...
متن کاملStructure Representation for Hyper spectral Images Using Binary Classification
Binary Partition Trees are hierarchical region-based representations of images. They define a reduced set of regions that covers the image support and that spans various levels of resolution. They are attractive for object detection as they tremendously reduce the search space. In this paper, several issues related to the use of BPT for object detection are studied. Concerning the tree construc...
متن کاملImage Classification via Sparse Representation and Subspace Alignment
Image representation is a crucial problem in image processing where there exist many low-level representations of image, i.e., SIFT, HOG and so on. But there is a missing link across low-level and high-level semantic representations. In fact, traditional machine learning approaches, e.g., non-negative matrix factorization, sparse representation and principle component analysis are employed to d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
دوره 9 4 شماره
صفحات -
تاریخ انتشار 2000